18 research outputs found

    Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ExoMars landing ellipse in Meridiani Planum, Mars

    Get PDF
    We present evidence for a complex, multigenerational bed form pattern and a new type of wind streak (the ripple streak) in the landing site ellipse of the 2016 ExoMars Entry descent and landing Demonstrator Module (EDM) in Meridiani Planum (Mars). We identified three main groups of bright-toned bed forms. Population 3, represented by NE-SW trending bed forms located inside craters, was emplaced by winds coming from the NW or the SE. Population 2, emplaced by strong easterlies, formed by intracrater transverse aeolian ridges (TARs) and N-S trending megaripples (plains ripples). Population 1 consists of a relict bed form pattern emplaced by winds coming from the north or south. Alternatively, population 1 can represent a sand ribbon pattern that formed together with the plain ripples. We also report the presence of a new type of wind streak, the ripple streak, which is formed by the population 2 bed forms clustered in the wake zone of impact craters. Based on the results of this work, we now know the EDM module is set to land in a complex aeolian environment. Data from the Dust Characterization, Risk Assessment, and Environment Analyser on the Martian Surface onboard the EDM can help to better decipher the wind regime in Meridiani Planum

    Thermal treatment under high-vacuum of tars relevant in combustion and material science

    Get PDF
    The composition of tars, typically derived from coal and heavy fuel processing or formed in fuel-rich combustion, determines their transformation into carbons relevant in combustion and environmental fields as well as for material production. The speciation of the huge number of aromatic components of tars, usually found in form of viscous black liquid or solid, is not straightforward because of the tar complexity and high molecular weight, spanning from few hundreds up to thousands of Da. To this regard, the pre-separation of tar in lighter and heavier fractions simplifies the further characterization of its composition. The present work reports a fractionation method of a typical sample of combustion-formed tar based on moderate heating in high-vacuum conditions (10-6 mbar). It was preliminarily tested on a single polycyclic aromatic hydrocarbon, coronene, and on synthetic mixtures of polycyclic aromatic hydrocarbons, presumed to be the basic aromatic moieties of tar components. Lighter components obtained by condensation/deposition as thin films and/or crystals, as well as the heavier residue, were analysed by optical microscopy and spectroscopy. The separation procedure allowed to get more information on the components distribution also inferring the self-organization in cluster assembly and/or crystal forms

    Electric properties of dust devils

    Get PDF
    Dust devils are one of the most effective phenomena able to inject dust grains into the atmosphere. On Mars, they play an important role to maintain the haze and can significantly affect the global dust loading, especially outside the dust storm season. Despite dust devils having been studied for a century and a half, many open questions regarding their physics still exist. In particular, the nature of the dust lifting mechanisms inside the vortices, the development of the induced electric field and the exact contribution to the global atmospheric dust budget are still debated topics. In this paper, we analyze the dust devil activity observed in the Moroccan Sahara desert during a 2014 field campaign. We have acquired the most comprehensive field data set presently available for the dust devils: including meteorological, atmospheric electric field and lifted dust concentration measurements. We focus our attention on the electric field induced by vortices, using this as the principal detection parameter. We present, for the first time, the statistical distribution of dust devil electric field and its relationships with the pressure drop, the horizontal and vertical vortex velocity and the total dust mass lifted. We also compare the pressure drop distribution of our sample with the ones observed on the martian surface showing the similarity of the dust devils samples and the usefulness of this study for the next martian surface missions

    Martian environmental chamber: Dust system injection

    Get PDF
    NessunaThe aim of this work is to describe the development and implementation of an experimental setup able to reproduce some characteristics of the Martian atmosphere. The development of such setup fits into the context of MicroMED project, that foresees the development of an optical particle counter to be accommodated on the ExoMars 2020 Surface Platform, as part of the suite of sensors named Dust Complex. MicroMED will perform the first direct measurement of the size distribution of the powder close to Martian surface. The experimental setup is able to reproduce the characteristics of the Martian atmosphere: pressure, atmospheric composition, the actual temperature in which MicroMED will operate (from 20 C to 40 C) and the most important thing: the presence of suspended dust. The main result obtained in this work was the right configuration of an experimental setup in which to test sensors or instruments that work in Martian conditions. In particular, a dust injection system has been developed in order to obtain a dust distribution that was localized and without the formation of particles aggregates, for a correct calibration of the instrument

    Signal-adapted tomography as a tool for dust devil detection

    Get PDF
    Dust devils are important phenomena to take into account to understand the global dust circulation of a planet. On Earth, their contribution to the injection of dust into the atmosphere seems to be secondary. Elsewhere, there are many indications that the dust devil’s role on other planets, in particular on Mars, could be fundamental, impacting the global climate. The ability to identify and study these vortices from the acquired meteorological measurements assumes a great importance for planetary science. Here we present a new methodology to identify dust devils from the pressure time series testing the method on the data acquired during a 2013 field campaign performed in the Tafilalt region (Morocco) of the North- Western Sahara Desert. Although the analysis of pressure is usually studied in the time domain, we prefer here to follow a different approach and perform the analysis in a time signal-adapted domain, the relation between the two being a bilinear transformation, i.e. a tomogram. The tomographic technique has already been successfully applied in other research fields like those of plasma reflectometry or the neuronal signatures. Here we show its effectiveness also in the dust devils detection. To test our results, we compare the tomography with a phase picker time domain analysis. We show the level of agreement between the two methodologies and the advantages and disadvantages of the tomographic approach

    The effect of dust lifting process on the electrical properties of the atmosphere

    Get PDF
    Airborne dust and aerosol particles affect climate by absorbing and scattering thermal and solar radiation and acting as condensation nuclei for the formation of clouds. So, they strongly influence the atmospheric thermal structure, balance and circulation. On Earth and Mars, this 'climate forcing' is one of the most uncertain processes in climate change predictions. Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. These processes are not confined to Earth, but occur also on Mars, Venus and Titan. It is clear that the knowledge of the atmospheric dust properties and the mechanisms of dust settling and raising into the atmosphere are important to understand planetary climate and surface evolution. On Mars the physical processes responsible for dust injection into the atmosphere are still poorly understood, but they likely involve saltation as on Earth. Saltation is a process where large sand grains are forced by the wind to move in ballistic trajectories on the soil surface. During these hops they hit dust particles, that are well bound to the soil due to interparticle cohesive forces, thus transferring to them the momentum necessary to be entrained into the atmosphere. Recently, it has been shown that this process is also responsible to generate strong electric fields in the atmosphere up to 100-150 kV/m. This enhanced electric force acts as a feedback in the dust lifting process, lowering the threshold of the wind friction velocity u* necessary to initiate sand saltation. It is an important aspect of dust lifting process that need to be well characterized and modeled. Even if literature reports several measurements of E-fields in dust devils events, very few reports deal with atmospheric electric properties during dust storms or isolated gusts. We present here preliminary results of an intense field test campaign we performed in the West Sahara during the 2013 and 2014 dust storm seasons. We collected a statistical meaningful set of data characterizing relationship between dust lifting and atmospheric E-field that had never been achieved so far. <P /

    CFD analysis and optimization of the sensor “MicroMED” for the ExoMars 2020 mission

    Get PDF
    Characterization of dust is a key aspect in recent space missions to Mars. Dust has a huge influence on the planet's global climate and it is always present in its atmosphere. MicroMED is an optical particle counter that will be part of the "Dust Complex" suite led by IKI in the ExoMars 2020 mission and it will determine size distribution and concentration of mineral grains suspended in martian atmosphere. A Computational Fluid Dynamic (CFD) analysis was performed aimed at the optimization of the instrument's sampling efficiency in the 0.4-20 ÎĽm diameter range of the dust particles. The analysis allowed to understand which conditions are optimum for operations on Mars and to consequently optimize the instrument's fluid dynamic design

    Photoprocessing of Organic Material on Ceres: Laboratory Studies on Chemical Evolution of the Inner Dwarf Planet

    Get PDF
    Ceres is the largest object of the Solar System main belt with a complex geological and chemical history, which experienced extensive water related processes and geochemical differentiation. Ceres' surface is characterized by dark materials, phyllosilicates, ammonium-bearing minerals, carbonates, water ice, and salts. In addition to a global presence of carbon-bearing chemistry, local concentration of aliphatic organics has been detected by Dawn mission. The mission, thanks to the data collected by the Italian instrument VIR, showed clear evidence of a high amount of aliphatic organic material on the surface of Ceres. This has raised new questions about the origin and preservation of this material, especially when considering its high estimated abundance. We started a series of laboratory studies on physicochemical evolution of organic material interacting with minerals thought to be present on Ceres. The goal is to understand the transformations induced on these samples by processing with ultraviolet radiation
    corecore